Selamat datang, Pengunjung. Silahkan masuk atau mendaftar.
April 05, 2025, 08:57:44 PM

Masuk dengan nama pengguna, kata sandi dan lama sesi

Shoutbox

Ellenlag

Desember 31, 2024, 02:50:24 AM
We have thoroughly reviewed and evaluated the top best antivirus to provide our readers with a curated list of the most trusted providers. Safeguard your personal data and computer from cyber threats choose one of the leading antivirus solutions from the table belo

O Ik

Maret 14, 2021, 12:04:08 AM
Kapan-kapan kita cerita-cerita tentang Paus Formosus.

O Ik

Maret 14, 2021, 12:03:51 AM
Kapan-kapan kita cerita-cerita tentang planet-panet.
 

cotrans

Desember 07, 2020, 03:17:25 PM
Kapan-kapan, kita kumpul bareng, yuk, sambil makan-makan.  ;D
 

new_news

Juli 09, 2020, 03:19:21 PM
Halo.  Saya anggota baru.  :D

Recent

Anggota
Stats
  • Total Tulisan: 133
  • Total Topik: 124
  • Online Today: 9
  • Online Ever: 180
  • (Januari 31, 2025, 09:57:07 AM)
Pengguna Online
Users: 0
Guests: 7
Total: 7

7 Pengunjung, 0 Pengguna

Penulis Topik: Luas Segitiga di Ruang $\mathbb{R}^n$  (Dibaca 178 kali)

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Offline cotrans

  • Administrator
  • Full Member
  • *****
  • Tulisan: 111
  • Reputasi: +0/-0
  • Jenis kelamin: Pria
    • Lihat Profil
  • Agama: Katolik
Luas Segitiga di Ruang $\mathbb{R}^n$
« pada: April 07, 2021, 07:14:55 PM »
Sanctus, Sanctus, Dominus Deus Sabaoth.

\section{Luas Segitiga di Ruang $\mathbb{R}^n$}

Luas segitiga di ruang $\mathbb{R}^n$ yang ketiga titik sudutnya $\vec{a} := \sum_{i = 1}^n a_i\hat{x}_i$, $\vec{b} := \sum_{i = 1}^n b_i\hat{x}_i$, dan $\vec{c} := \sum_{i = 1}^n c_i\hat{x}_i$ di mana $a_i, b_i, c_i \in \mathbb{R}$ untuk semua $i \in \{ 1, \cdots, n \}$, serta
\[ \hat{x}_i := (\underset{n}{\underbrace{0, \cdots, 0, \overset{i}{1}, 0, \cdots, 0}}), \]
adalah
\[ \Delta := \frac{1}{2}|\vec{a}\times\vec{b} + \vec{b}\times\vec{c} + \vec{c}\times\vec{a}|. \]
\[ \Delta = \frac{1}{2}\left|\sum_{i, j = 1}^n a_ib_j\hat{x}_i\times\hat{x}_j + \sum_{i, j = 1}^n b_ic_j\hat{x}_i\times\hat{x}_j + \sum_{i, j = 1}^n c_ia_j\hat{x}_i\times\hat{x}_j\right|. \]
\[ \Delta = \frac{1}{2}\left|\sum_{i, j = 1}^n (a_ib_j + b_ic_j + c_ia_j)\hat{x}_i\times\hat{x}_j\right|. \]
\[ \Delta = \frac{1}{2}\left[\sum_{i, j = 1}^n (a_ib_j + b_ic_j + c_ia_j)(\hat{x}_i\times\hat{x}_j)\cdot\sum_{k, l = 1}^n (a_kb_l + b_kc_l + c_ka_l)(\hat{x}_k\times\hat{x}_l)\right]^{1/2}. \]
\[ \Delta = \frac{1}{2}\left[\sum_{i, j, k , l = 1}^n (a_ib_j + b_ic_j + c_ia_j)(a_kb_l + b_kc_l + c_ka_l)(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk})\right]^{1/2}. \]
\[ \Delta = \frac{1}{2}\left[\sum_{i, j = 1}^n (a_ib_j + b_ic_j + c_ia_j)[(a_ib_j + b_ic_j + c_ia_j) - (a_jb_i + b_jc_i + c_ja_i)]\right]^{1/2}. \]

Apabila $n = 1$, maka $\Delta = 0$.

Apabila $n = 2$, maka
\[ \Delta = \frac{1}{2}\left|\begin{vmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ c_1 & c_2 & 1 \end{vmatrix}\right|. \]

Apabila $n = 3$, maka
\[ \Delta = \frac{1}{2}\left[\begin{vmatrix} 1 & a_2 & a_3 \\ 1 & b_2 & b_3 \\ 1 & c_2 & c_3 \end{vmatrix}^2 + \begin{vmatrix} a_1 & 1 & a_3 \\ b_1 & 1 & b_3 \\ c_1 & 1 & c_3 \end{vmatrix}^2 + \begin{vmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ c_1 & c_2 & 1 \end{vmatrix}^2\right]^{1/2}. \]

Sampai jumpa lagi.



« Edit Terakhir: April 07, 2021, 07:22:07 PM by cotrans »

 

Top Poster

cotrans
111 Tulisan

Roni
17 Tulisan

new_news
2 Tulisan

adgroups
1 Tulisan

O Ik
1 Tulisan

Ellenlag
0 Tulisan

Alexeynut
0 Tulisan

GeorgeSluri
0 Tulisan